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Atmospheric deposition of mercury (Hg) has been shown

to be a significant source of Hg on the landscape (Rada

et al. 1989; Swain et al. 1992) and is believed to contribute

to increased Hg concentrations in aquatic food webs

(Sorensen et al. 1994; Edwards et al. 1999). Methylmer-

cury (MeHg) is the organic, bioavailable form of Hg that

accumulates to toxic levels in top-level predators in aquatic

systems (Suedel et al. 1994). Although limnological con-

ditions in lakes and rivers can affect Hg methylation and

concentrations in fishes, these relationships often vary

among water bodies and fish species (McMurtry et al.

1989; Bodaly et al. 1993). Thus, regional studies are nee-

ded to identify mechanisms of local MeHg production and

factors associated with Hg contamination in fishes.

The Prairie Pothole Region of North America has a

unique variety of natural wetlands and glacial lakes that are

important for fish, shorebirds, waterfowl, and humans.

Cyclical climate, characterized by extended wet–dry peri-

ods, cause high variation in water surface area within the

region (Rosenberry 2003). For example, consecutive years

of high precipitation during the mid-1990s caused dramatic

surface area increases in many glacial lakes and wetlands

of eastern South Dakota. After lake levels increased, sev-

eral fish populations were found to contain elevated Hg

concentrations (>1 lg/g), prompting local officials to post

fish consumption advisories (South Dakota Game, Fish and

Parks, 2006).

The discovery of elevated Hg concentrations in fishes

was surprising because (1) there were no apparent point-

source inputs of Hg, and (2) the limnological conditions

of most of these lakes (eutrophic, high pH) generally do

not favor Hg methylation or bioaccumulation (Grieb et al.

1990; Pickhardt et al. 2002). Moreover, lakes that expe-

rienced large increases in surface area generally contained

fast growing fish populations, a situation that usually

lowers Hg concentration due to growth dilution (Rodgers

and Qadri 1982; MacCrimmon et al. 1983). In this study,

we document changes in lake surface area for glacial

lakes in the Prairie Pothole Region and relate this to Hg

concentration in adult walleye (Sander vitreus). Although

a similar phenomenon is known to occur in reservoirs

with fluctuating water levels (Jackson 1988; Snodgrass

et al. 2000; Sorensen et al. 2005), widespread effects of

surface area changes on Hg concentrations in fishes have

not been documented in natural, glacial lakes. We

hypothesized that increases in lake surface area enhanced
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Hg methylation and resulted in elevated fish Hg concen-

trations.

Materials and Methods

We studied 18 lakes within the Northern Glaciated Plains

Ecoregion of eastern South Dakota (Fig. 1). Lakes in this

region range from eutrophic to hypereutrophic and gener-

ally do not thermally stratify during summer months (i.e.,

polymictic mixing cycles). Changes in lake surface area

were determined using Landsat 5 imagery (http://

www.sdview.sdstate.edu) collected during the late 1980s

(dry period) and early 2000s (wet period). Lake surface

areas, determined from images obtained in 1987 and 2000,

were digitized in ArcMap 9.1 to quantify the surface area

(ha) of each lake for both time periods. We used regression

analysis to assess the relationship between Hg concentra-

tions in walleyes and percent change in surface area (SA)

of lakes between wet (2000) and dry (1987) years.

Adult walleyes (350–500 mm total length TL) were

collected during summer months (June through August)

from 1996 to 2005 using a combination of electrofishing,

trap-nets, and experimental gill-nets. Muscle samples

(~2 g) obtained from 1996 to 2004 were collected from

whole walleye fillets. A composite sample was obtained

from five similar sized walleyes (50 mm size categories)

then homogenized and analyzed for total Hg. Three to six

composite samples were obtained from each lake and

averaged to quantify walleye Hg concentration. In 2005,

eight additional lakes were sampled and walleye fillets

(10–15 fish/lake) were analyzed individually for total Hg

concentration, and then averaged to determine mean Hg

concentration for the lake. All tissue samples were ana-

lyzed for total Hg using cold vapor atomic fluorescence

spectrometry (Jones et al. 1997; Collin-Hansen et al. 2005;

Yu 2005). The standard reference material (SRM) used was

National Institute of Standards and Technology (NIST)

#2976 muscle tissue. Our SRM contained 54.6 (2.1) ng/g

total Hg. Fish samples were spiked at a level of either 0.5,

1.0, or 3.0 ng/g, with a detection limit of 0.02 ng/g. Percent

spike recovery in our samples averaged 100.2 (4.6). Min-

imum detection limits for our fish tissue samples were

<0.02 lg/g total Hg.

Information on watershed characteristics and water

quality attributes were available for 10 of the 18 lakes we

sampled (Stukel 2003). We used these data to explore

relationships between walleye Hg concentrations and

environmental factors. Variables were tested for homoge-

neity of variance and normality. Pearson correlations were

used to identify significant relationships between individ-

ual parameters and walleye Hg levels (a = 0.05)

Results and Discussion

Mean Hg concentrations in walleyes varied considerably

among lakes, ranging from 0.05 (Pelican lake) to 0.99 lg/g

(Bitter and Twin lakes; Table 1). Changes in lake surface

area, as determined by difference (i.e., wet year–dry year),

ranged from –54 ha (Lake Madison) to +3,683 ha (Waubay

Lake). On a percentage basis, Lake Madison had the largest

decrease in surface area (4.8%), while Lynn Lake

expanded in size by over 300% (Table 1). Percent data

were log transformed to correct for normality because we

had a right-skewed distribution. The increase in lake SA

associated with wet periods of the mid-1990s was signifi-

cantly related to walleye Hg concentrations (n = 18, model

F[1,17] = 26.0, r2 = 0.62, p < 0.0001; Fig. 2). Analysis of

watershed and water quality variables from the ten lakes

data set showed that most variables were poorly correlated

to walleye Hg concentration, except SA change (Table 2).

Rapid increases in lake levels during the 1990s may be

analogous to the ‘‘reservoir effect’’ and explain variation in

Hg concentrations among the lakes we studied. Methyla-

tion of Hg in newly flooded soils may remain high for 10–

15 years post-inundation (Porvari 1998; Bowles et al.

2003), so it is possible that walleye Hg concentrations will

remain high for several more years. It appears that atmo-

spheric Hg deposition in eastern South Dakota (Gossman

2003; EPA 2005) is not a trivial contribution and can

accumulate in adjacent terrestrial soils and contribute to Hg

contamination in aquatic food webs when flooding occurs.

In our study, the magnitude of lake surface area expansionsFig. 1 Location of 18 study lakes in eastern South Dakota
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was positively related to Hg concentrations in walleye

(Table 1). However, it not known how the duration and/or

frequency of wet–dry cycles affect Hg levels in specific

water-bodies, because limnological conditions and water

cycles vary between lakes.

Increased Hg concentrations measured in fishes fol-

lowing water level fluctuations could be associated with the

frequency of inundation (Sorensen et al. 2005). Increased

sulfate levels, caused by the drying and rewetting of soils,

enhance sulfate reducing bacteria that produce MeHg.

Lakes that endure recurrent annual wet–dry cycles likely

experience lower sulfate mobilization than a lake that has

not been inundated for many years (Gilmour et al. 2004;

Sorensen et al. 2005). Thus, extended wet–dry periods in

eastern South Dakota may have resulted in elevated sulfate

concentrations that enhance Hg production and availability

in these systems (St. Louis et al. 2004).

Productivity of glacial lakes may contribute to Hg

concentrations in fish. For example, high walleye growth

rates (based on age-3 TL) are typical in many lakes with

elevated Hg concentrations (South Dakota Game, Fish and

Parks 2006). Fast growing fish populations should result in

fish with lower Hg concentrations owing to growth dilution

(Norstrom et al. 1976; Olsson 1976; Verta 1990) and high

algal productivity (Pickhardt et al. 2002; Essington and

Houser 2003); however, based on growth data for age-3

walleyes reported in Stukel (2003), we found that walleye

growth was positively correlated with mean Hg concen-

tration (n = 10, r = 0.695, p = 0.026). The surface area

changes that appear to enhance Hg methylation also

increase the productivity of these systems. As a result, the

buffering effect of high fish growth rates and primary

productivity (decreased Hg burden per algal cell) may not

be realized in natural lakes that increase in surface area

because of the link between productivity and Hg accumu-

lation.

Although variables such as pH, alkalinity, surface area,

and watershed area explained fish Hg concentrations in

Table 1 Surface area of lakes in 1987 (dry period) and 2000 (wet period), and mean Hg levels in adult walleyes collected from 1996–2005

Lake Surface area

1987 (ha)

Surface area

2000 (ha)

Percent change in

surface area

Walleye Hg (lg/g) Sample collection

year

Bitter 1309.9 4405.4 236.3 0.99 2005

Blue Dog 669.9 761.8 13.7 0.21 2000

Brandt 426.6 506.7 18.8 0.18 1998

Byron 751.8 746.9 –0.6 0.19 2005

Clear 468.7 484.7 3.4 0.14 1999

Enemy Swim 884.0 884.0 0.0 0.19 2005

Herman 521.3 502.2 –3.7 0.10 1996

Kampeska 1990.4 2046.8 2.8 0.30 2005

Lynn 157.2 643.4 309.4 0.57 2005

Madison 1109.3 1055.8 –4.8 0.21 1999

Pelican 1124.8 1124.8 0.0 0.05 2005

Pickerel 407.6 407.6 0.0 0.17 2000

Poinsett 3160.9 3160.9 0.0 0.13 1997

Roy 631.4 845.3 33.9 0.11 2005

Sinai 284.2 751.9 164.6 0.43 1996

Thompson 4989.9 5393.4 8.1 0.42 1996

Twin 364.9 1025.9 181.2 0.99 2005

Waubay 3648.2 7331.2 100.9 0.40 2001

The surface area of each lake was determined using Landsat 5 images collected in 1987 and 2000

% change SA
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Fig. 2 Relationship between mean walleye Hg concentrations (lg/g)

for eastern South Dakota glacial lakes and percent change in surface

area (SA) between wet (2000) and dry (1987) years [n = 18,

F[1,17]=26.0, p < 0.0001, r2 = 0.62, y = 0.5296 + 0.372(log percent

change in surface area)]
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other studies (McMurtry et al. 1989; Bodaly et al. 1993;

Rudd 1995), they did not correlate with walleye Hg levels

in our study (Table 2). This may be due to the high

methylation rates resulting from organic matter decompo-

sition that followed water level increases in the 1990s.

Further, low pH (<7.0) increases microbial methylation of

mercury (Wren and MacCrimmon 1983; Grieb et al. 1990;

Hakanson 2003), but water pH was relatively high in our

study lakes (mean = 8.9 ± 0.04 SE), and may explain why

pH did not influence Hg contamination.

Our study lakes were located in close proximity to each

other in eastern South Dakota (Fig. 1). Although the region

experienced relatively uniform precipitation during the

extended wet period of the mid-1990s, some lakes

expanded faster and several years earlier than others. Lakes

from early water-level expansions may be receding in

MeHg production, and reduced MeHg production within a

lake should result in lower total Hg concentrations in the

resident fish communities. Moreover, many lakes experi-

enced little to no change in surface area between wet and

dry years (Table 1). Several of these lakes (i.e., Kampeska,

Pelican, and Poinsett) have water control structures that

maintain stable water levels in the lake, and generally

contain fish with low Hg concentrations.

Recent fish consumption advisories in South Dakota

(South Dakota Game, Fish and Parks 2006) indicate that

Hg contamination is a concern. Walleye are a popular sport

fish in the Prairie Pothole Region and their position as a

primary piscivore makes them suitable for Hg monitoring

(Wren and MacCrimmon 1986). More importantly, our

results suggest that Hg contamination of walleyes and other

sport fishes in Prairie Pothole lakes should be monitored

regularly, particularly after lake levels increase. Lake

surface area change may prove to be a reliable predictor of

Hg concentrations, which would be useful for identifying

lakes with a potential risk of Hg contamination.
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